Mixed Exponentially Weighted Moving Average-Cumulative Sum Charts for Process Monitoring
نویسندگان
چکیده
The control chart is a very popular tool of statistical process control. It is used to determine the existence of special cause variation to remove it so that the process may be brought in statistical control. Shewhart-type control charts are sensitive for large disturbances in the process, whereas cumulative sum (CUSUM)–type and exponentially weighted moving average (EWMA)–type control charts are intended to spot small and moderate disturbances. In this article, we proposed a mixed EWMA–CUSUM control chart for detecting a shift in the process mean and evaluated its average run lengths. Comparisons of the proposed control chart were made with some representative control charts including the classical CUSUM, classical EWMA, fast initial response CUSUM, fast initial response EWMA, adaptive CUSUM with EWMA-based shift estimator, weighted CUSUM and runs rules–based CUSUM and EWMA. The comparisons revealed that mixing the two charts makes the proposed scheme even more sensitive to the small shifts in the process mean than the other schemes designed for detecting small shifts. Copyright © 2012 John Wiley & Sons, Ltd.
منابع مشابه
Mixed Cumulative Sum-Exponentially Weighted Moving Average Control Charts: An Efficient Way of Monitoring Process Location
Shewhart, exponentially weighted moving average (EWMA), and cumulative sum (CUSUM) charts are famous statistical tools, to handle special causes and to bring the process back in statistical control. Shewhart charts are useful to detect large shifts, whereas EWMA and CUSUM are more sensitive for small to moderate shifts. In this study, we propose a new control chart, named mixed CUSUM-EWMA chart...
متن کاملDesign of Exponentially Weighted Moving Average Chart for Monitoring Standardized Process Variance
Control charts for monitoring of process variance are developed based on Shewhart, exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) control charts for mean. In all these variance control charts, log transformation of the sample variance is used. The design procedure of this chart is complex and it is poorly understood by the industry. In this paper a EWMA chart for monito...
متن کاملPhase II monitoring of auto-correlated linear profiles using linear mixed model
In many circumstances, the quality of a process or product is best characterized by a given mathematical function between a response variable and one or more explanatory variables that is typically referred to as profile. There are some investigations to monitor auto-correlated linear and nonlinear profiles in recent years. In the present paper, we use the linear mixed models to account autocor...
متن کاملMaximum multivariate exponentially weighted moving average and maximum multivariate cumulative sum control charts for simultaneous monitoring of mean and variability of multivariate multiple linear regression
متن کامل
Robust economic-statistical design of the EWMA-R control charts for phase II linear profile monitoring
Control charts are powerful tools to monitor quality characteristics of services or production processes. However, in some processes, the performance of process or product cannot be controlled by monitoring a characteristic; instead, they require to be controlled by a function that usually refers as a profile. This study suggests employing exponentially weighted moving average (EWMA) and range ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Quality and Reliability Eng. Int.
دوره 29 شماره
صفحات -
تاریخ انتشار 2013